شرکت نانو آداک فناور

طراحی و ساخت، تأمین مواد و تجهیزات

طراحی و ساخت، تأمین مواد و تجهیزات

به وب سایت شرکت مهندسی نانو آداک فناور خوش آمدید
شرکت نانو آداک فناور

آدرس ها
دفتر R&D: تهران، بلوار کشاورز، خیابان قدس، نبش کوچه شاهد، پارک علم و فناوری دانشگاه تهران(ساختمان پژوهشی علوم و فناوری نانو)،پلاک 37، طبقه سوم، واحد 323
دفتر فروش: تهران، خیابان فاطمی، خیابان زرتشت غربی، خیابان مهدوی، پلاک 4، زنگ 2
تلفن تماس : 88962035 - 021
(ساعات تماس: 9 الی 17)
شماره تلگرام: 09306522025
فکس: 89782452 - 021
سامانه ی پیام کوتاه : 02188962035
Email : Nanoadaktrading@gmail.com

crisp

امروزه فناوری لایه نازک پیشرفت های چشمگیری داشته است و در بخش های مختلف صنعت استفاده می شود. می توان با استفاده از شیشه های با پوشش هایی که انتقال حرارت را در ساختمان ها کاهش می دهند، در مصرف انرژی و هزینه ها صرفه جویی کرد. همچنین می توان به روکش های لایه نازک با ویژگی های نوری مانند آنچه در لنزهای دوربین و عینک ها استفاده می شود، اشاره کرد. روش های مختلفی برای ساخت لایه های نازک به کار گرفته می شود که تبخیر حرارتی مبتنی بر مقاومت الکتریکی (Evaporative Deposition) یکی از آن هاست و این روش جزء روش های لایه نشانی فیزیکی بخار (Physical Vapor Deposition - PVD) محسوب می شود. لایه نشانی فیزیکی بخار نیز به نوبه خود جزء روش های لایه نشانی در خلا به شمار می آید. 
سه مرحله اصلی در هر فرایند لایه نشانی فیزیکی تحت شرایط خلا وجود دارد: (الف) تبخیر ماده منبع؛ (ب) انتقال بخار از منبع به ماده ای (زیرلایه) که می خواهیم لایه نشانی روی آن انجام شود و (ج) تشکیل لایه نازک روی زیرلایه با انباشت بخار منبع مورد نظر. با کنترل مقدار ماده انباشت شده می توان ضخامت لایه را تنظیم کرد.


1- مقدمه
برای ایجاد پوشش هایی با کیفیت بالا از روش های لایه نشانی در خلا می توان استفاده کرد. از جمله این روش ها؛ روش های لایه نشانی فیزیکی بخار (Physical Vapor Deposition =PVD) است که تبخیر حرارتی مبتنی بر مقاومت الکتریکی (Evaporative Deposition) یکی از انواع روش های PVD محسوب می شود. 
لایه نشانی به روش تبخیر حرارتی فرآیندی است که در محیط خلاء و به کمک اعمال جریان الکتریکی برای تبخیر ماده منبع صورت می گیرد و هدایت و انتقال ماده تبخیر شده به سمت زیرلایه بر اساس اختلاف فشار میان محلی که ماده منبع و زیرلایه قرار دارد، اتفاق می افتد. این روش لایه نشانی یکی از رایج ترین انواع لایه نشانی ها در ساخت لایه های نازک به شمار می رود. پارامترهایی که در این نوع لایه نشانی بایستی کنترل شوند، فشار محفظه و دمای بوته ای است که ماده منبع در آن قرار می گیرد. در این روش، ماده منبع که به عنوان پوشش استفاده می شود (مانند یک قطعه فلز) در یک ظرف (بوته) که با نام قایقک یا فیلامان نیز شناخته می شود و از جنس فلزات مقاوم است، قرار می گیرد. با عبور جریان برق از قایقک یا بوته و داغ شدن ماده مورد نظر به عنوان ماده منبع و تبخیر آن در محیط خلاء، به دلیل اختلاف فشاری که بین محل بوته و محل زیرلایه وجود دارد، یک لایه بسیار نازک بر روی زیرلایه قرار می گیرد. این روش پیشتر در اوایل قرن بیستم به منظور ساخت آینه های فلزی از آلومینیوم یا نقره یا قطعات ماشین آلات مورد استفاده قرار می گرفت.
همان طور که در شکل1 نمایش داده شده است سه مرحله اصلی در هر فرایند لایه نشانی فیزیکی تحت شرایط خلا شامل (الف) تبخیر ماده منبع، (ب) انتقال بخار از منبع به زیرلایه و (ج) تشکیل لایه نازک روی زیرلایه است.


filereader.php?p1=main_ec6ef230f1828039e
شکل1- طرح واره سه مرحله اصلی در هر فرایند لایه نشانی فیزیکی بخار (PVD): تبخیر از منبع؛ انتقال ماده تبخیر شده از بوته به سمت به زیرلایه به دلیل اختلاف فشار ایجاد شده؛ و انباشت ماده تبخیر شده روی زیرلایه و تشکیل لایه نازک.



فرایندهای لایه نشانی باید تحت شرایط خلا انجام شوند زیرا برای تبخیر حرارتی دمای بسیار بالایی نیاز است و هر فلز واکنش پذیری، در دمای بالا در مجاورت اکسیژن، اکسید می شود. از طرف دیگر حضور و برخورد مولکول های سایر گازها در مسیر انتقال ماده تبخیر شده از منبع به زیرلایه موجب می شود که نرخ لایه نشانی کاهش یابد و مانع از تشکیل لایه های با چگالی بیشتر شود. درحالیکه در شرایط خلا تعداد مولکول ها کاهش می یابند و میزان برخورد مولکول های ماده منبع با مولکول های موجود در محفظه، کاهش می یابد.

2- طرز کار لایه نشانی به روش تبخیر حرارتی
در این روش لایه نشانی، ماده منبع حرارت داده می شود تا ماده به صورت بخار از سطح ماده منبع آزاد شود و به-دلیل اختلاف فشار محیط اطراف زیرلایه با محیط اطراف منبع، ماده تبخیر شده به سمت زیرلایه حرکت می کند. هنگامی که اتم ها، مولکول ها و خوشه هایی از مولکول ها که در فاز بخار هستند به زیرلایه می رسند، چگالیده می شوند و از حالت بخار به حالت جامد تغییر فاز می دهند. گرمای چگالش به وسیله زیرلایه جذب می شود. از دیدگاه میکروسکوپی گرمایی که از این فرایند به دست می آید می تواند بسیار زیاد باشد، به طوری که اگر زیرلایه پلاستیکی باشد یا دمای ذوب آن پایین باشد، هنگام پوشش دهی و در حین لایه نشانی می تواند ذوب شود. با انجام آزمایش های مختلف و تنظیم فاصله مناسب بین منبع و زیرلایه می توان گرمای ایجاد شده را کنترل کرد تا مانع از ذوب شدن زیرلایه شد. در تبخیر حرارتی به روش مقاومت الکتریکی در واقع به ماده منبع، گرما داده می شود. این روش ساده ترین روش در میان روش های تبخیر حرارتی است که در محفظه خلا انجام می شود. با اعمال و گذر جریان الکتریکی از قایقک که در واقع یک نوع مقاومت الکتریکی است، دمای آن افزایش می یابد و درنتیجه ماده منبع که در داخل آن قرار دارد و می تواند یک عنصر فلزی یا آلیاژ مخلوط یا ترکیبی باشد، را تبخیر کند.

در این روش ولتاژ پایین و جریان بالا ( به عنوان مثال 10 تا 40 ولت به صورت DC و جریان الکتریکی برابر با 1 تا 10 آمپر) به محفظه خلا اعمال می شود. توان الکتریکی از فیلامان یا قایقک عبور داده می شود که در تماس با ماده منبع است. فیلامان یا قایقک معمولا از 1000 تا 2000 درجه سانتیگراد گرم می شود. برای تبخیر حرارتی موثر بایستی فشار بخار ماده منبع در دمایی که به فیلامان یا قایقک اعمال می شود، مقدار قابل قبولی باشد. دمای لازم برای تبخیر چند فلز درجدول 1، آورده شده است.



جدول 1 - دمای مورد نیاز برای تبخیر چندین فلز
filereader.php?p1=main_ce499dea30cfce118


تبخیر مواد حتی در دمای اتاق نیز اتفاق می افتد که اعمال گرمای بیشتر منجر به تسریع فرایند تبخیر می شود. در یک دمای خاص، فشار بخاری که از یک ماده ساطع می شود فشار بخار تعادلی نام دارد. شکل 2 نمودار فشار بخار تعادلی بر حسب دما را برای بعضی از مواد نشان می دهد.



filereader.php?p1=main_1d665b9b1467944c1
شکل 2- فشار بخار تعادلی تعدادی از فلزات در دماهای مختلف.


همان طور که گفته شد ارتباط میان فشار بخار تعادلی مواد و دما از آنچه در شکل 2 نشان داده شده است، پیروی می کند. با توجه به شکل 2، بعد از جیوه، کادمیوم در همه دماها، فشار بخار تعادلی بالاتری را نسبت به بقیه مواد دارد و کم ترین فشار بخار تعادلی متعلق به آهن است. مقدار عددی فشار بخار برای هر فلز در یک دمای مشخص را می توان از روی چنین منحنی هایی (منحنی فشار بخار مواد) به دست آورد. برای مثال کادمیوم در دمای 500 کلوین فشار بخار تعادلی تقریبا برابر با 3-10 میلی بار دارد اما آهن حتی اگر تا دمای 1000 کلوین حرارت ببیند، چنین فشار بخاری را نخواهد داشت. با استفاده از منحنی فشار بخار مواد و بر اساس فشاری که در محفظه لایه نشانی ایجاد شده است، می توان مقدار دمای مورد نیاز ماده منبع را برای تبخیر شدن به دست آورد.

تخمین دمای فیلامان دارای اهمیت است که به طور ساده برای سیمی که طول آن L و سطح مقطع آن A است رابطه میان دمای فیلامان (T) و توان الکتریکی اعمال شده (P) از رابطه زیر پیروی می کند:

filereader.php?p1=main_cda522d4353b166cc

i جریان الکتریکی اعمال شده، (0)ρ مقاومت الکتریکی در دمای مرجع، 293=(T(0 و n کمیت ثابتی است که معمولا مقدار آن نزدیک به عدد 1 است. L طول فیلامان و Ac مساحت سطح مقطع فیلامان سیمی شکل است.


شکل طرح واره محفظه ای را که برای ایجاد لایه های نازک به روش تبخیر حرارتی با استفاده از مقاومت الکتریکی استفاده می شود، نشان می دهد. تبخیر حرارتی معمولا در شرایط خلا بالا (فشار بین3-10 تا 9-10 میلی بار) و حتی خلا بسیار بالا (فشار بین 9-10 تا 12-10 میلی بار) انجام می شود. محفظه هایی که برای این منظور به کار گرفته می شوند بل جار (Bell Jar) نام دارند که امکان طراحی های گوناگونی را فراهم می آورند و با آنها می توان فرایند تبخیر را با صرف هزینه کم مشاهده کرد.



filereader.php?p1=main_7bc3ca68769437ce9
شکل 3- طرح واره لایه محفظه خلا برای ساخت لایه نازک به روش تبخیر حرارتی 


فیلامان ها یا قایقک هایی که برای قرار دادن ماده منبع استفاده می شوند معمولا از جنس تنگستن، مولیبدن، تانتالیوم، برونیترید و سرامیک و یا آلیاژهایی از این نوع مواد است. فیلامان ها بایستی نقطه ذوب بالا داشته باشد و قابلیت حل شدن آن در ماده منبع پایین باشد تا با ماده منبع آلیاژ تشکیل ندهند. همچنین در برابر شوک های حرارتی مقاوم باشد و ماده منبع بتواند آن را مرطوب کند (wet). بعلاوه این فیلامان ها بایستی در برابر گازهای موجود در محیط غیرفعال باشند. فیلامان ها در شکل های مختلفی مانند ورق و سیم های پیچیده شده که در شکل 4 مشاهده می شوند، ساخته می شوند.


filereader.php?p1=main_13207e3d5722030f6
شکل 4- فیلامان ها و بوته های گوناگونی که در لایه نشانی به روش تبخیر حرارتی به کار گرفته می شوند.



3- ویژگی های لایه نازک تشکیل شده به روش تبخیر حرارتی مبتنی بر مقاومت الکتریکی
ماده تبخیر شده در هنگام رسیدن به زیرلایه روی زیر لایه انباشته می شود. مراحل تشکیل لایه روی زیرلایه شامل هسته زایی و رشد است که ویژگی های فیزیکی لایه نشانده شده بر اساس پارامترهای مختلفی که در هسته زایی و رشد موثرند، توضیح داده می شود. در مرحله هسته زایی اتم ها و مولکول هایی که به سطح زیرلایه می رسند انرژی گرمایی خود را که ناشی از حرکت جنبشی آن است روی سطح مصرف می کنند و درواقع آن را به سطح منتقل می کنند. هنگامی که این انرژی به طور کامل از بین رفت مولکول ها به زیرلایه می چسبند و هسته تشکیل می شود. با ادامه یافتن تشکیل این هسته ها، لایه هایی به صورت ورقه های پیوسته شکل می گیرد و سرانجام زیرلایه را می پوشانند و به این ترتیب در حین رشدِ لایه ریزساختار، لایه نشانده شده گسترش می یابد. این ریزساختار از نظر اندازه ذره ها، جهتگیری آنها، تخلخل، ناخالصی های موجود و گازهای به دام افتاده مورد توجه اند. برهمکنش های شیمیایی میان اتم ها و سطح، قدرت پیوند میان لایه و زیرلایه را معین می کند. برای مثال طلا یک پیوند شیمیایی با دی اکسید سیلیکون (به عنوان زیرلایه) تشکیل نمی دهد، زیرا چسبندگی لایه های طلا روی شیشه بسیار ضعیف است. برای بهبود بخشیدن چسبندگی طلا به شیشه (دی اکسید سیلیکون) می توان یک لایه نازک پیوند دهنده 500 آنگسترومی مثلا از جنس کروم یا نایوبیوم روی شیشه نشاند و سپس لایه نشانی طلا را انجام داد. کروم و نایوبیوم با دی اکسید سیلیکون پیوندهای شیمیایی و با طلا پیوند فلزی برقرار می کنند. اصولا فرایندهای لایه نشانی تحت خلا در میان فرایندهای دیگری مانند لایه نشانی الکتروشیمیایی و پاشش شعله-ای که برای ایجاد لایه های نازک استفاده می شود، حائز اهمیت اند. زیرا از لایه نشانی تحت خلا، خلوص شیمیایی بالا، چسبندگی خوب میان لایه نازک و زیرلایه، کنترل تنش مکانیکی لایه، ساخت لایه های بسیار نازک و چند لایه هایی از مواد مختلف و همچنین کمترین میزان به دام افتادگی گاز حاصل می شود.

انرژی جنبشی اتم های فرودی، دمای زیرلایه، نرخ لایه نشانی، انرژی که در هنگام رشد لایه به آن اعمال می شود و حضور و اثر شارش گازها در هنگام انتقال ماده تبخیر شده از منبع به زیرلایه، پارامترهایی هستند که بر ویژگی های فیزیکی و شیمیایی لایه نازک مورد نظر موثرند و با تغییر و کنترل آنها می توان لایه نازکی را که قدرت مکانیکی، چسبندگی، بازتاب نوری، مقاومت الکتریکی، ویژگی های مغناطیسی و چگالی متفاوتی داشته باشد را ساخت.

از روش تبخیر حرارتی مبتنی بر مقاومت الکتریکی برای ساخت لایه های نازک رسانای الکتریسیته، رساناهای شفاف (لایه بسیار نازکی که نور می تواند از آن بگذرد)، لایه های نازک عایق الکتریکی، لایه های نوری، لایه های نازک کنترل کننده حرارت، در صنعت بسته بندی، دکوراسیون و پوشش های تزئینی، لایه های نازک سخت و مقاوم، ادوات ضبط مغناطیسی و پوشش های ضدخوردگی استفاده می شود.

با استفاده از تبخیر حرارتی می توان پوشش های ظریف با ضخامت یکنواخت و سختی مناسب را روی گستره ای از زیرلایه ها با جنس های متفاوت از فولاد تا انواع پلاستیک ایجادکرد.

4- مزایا و معایب
پوشش هایی که با روش تبخیر حرارتی ساخته می شوند را در گستره ای از دماهای مختلف از دمای اتاق تا دمای 500 درجه سانتیگراد می توان روی قطعات گوناگون قرار داد. با این روش پوششی بسیار یکنواخت می توان ایجادکرد که چسبندگی پوشش یا لایه نازک به زیرلایه را در مقایسه با برخی از روش های پوشش دهی، تا بیش از شش برابر افزایش می دهد. در مقایسه با افزایش طول عمر و کیفیت بالای پوشش، هزینه آن منطقی و حتی پایین ارزیابی می شود. رنگ زیبای حاصل از اکثر پوشش ها امکان استفاده از آنها را در قطعات لوکس و دکوری نیز فراهم نموده است.

منابـــــع :

  • 1. Milton Ohering, “Materials Science of Thin Films, Deposition and Structure”, 2nd Edition, New York, Academic Press (2002).